Various Numerical Methods for Singularly Perturbed Boundary Value Problems
ثبت نشده
چکیده
As Science & technology develop, many practical problems, such as the mathematical boundary layer theory or approximation of solution of various problems described by differential equations involving large or small parameters have become increasingly complex and therefore require the use of asymptotic methods. However, the theory of asymptotic analysis for differential operators has mainly been developed for regular perturbations where the perturbations are subordinate to the unperturbed operator. In some problems, the perturbations occur over a very narrow region across which the dependent variable undergoes very rapid changes. These narrow regions are frequently adjacent to the boundaries of the domain of interest because a small parameter multiplies the highest derivative. Consequently, they are usually referred to as boundary layers in fluid mechanics, edge layers in solid mechanics, skin layers in electrical applications, shock layers in fluid and solid mechanics, transition points in quantum mechanics, WKB problems, the modeling of steady and unsteady viscous flow problems with large Reynolds numbers and convective heat transport problems with large peclet numbers.
منابع مشابه
A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer
The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملAn efficient numerical method for singularly perturbed second order ordinary differential equation
In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...
متن کاملNumerical method for a system of second order singularly perturbed turning point problems
In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...
متن کاملAnthology of Spline Based Numerical Techniques for Singularly Perturbed Boundary Value Problems
Spline methods provide an important tool to solve singularly perturbed boundary value problems. The present paper gives a comprehensive review of computational methods based on splines used in the solution of various classes of singularly perturbed problems such as self adjoint, linear, non-linear, semi-linear, quasi-linear, singular, single parameter and multi parameter. The spline based numer...
متن کاملRobust Monotone Iterates for Nonlinear Singularly Perturbed Boundary Value Problems
Recommended by Donal O'Regan This paper is concerned with solving nonlinear singularly perturbed boundary value problems. Robust monotone iterates for solving nonlinear difference scheme are constructed. Uniform convergence of the monotone methods is investigated, and convergence rates are estimated. Numerical experiments complement the theoretical results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015